求证u=z arctan(x/y)中x,y,z的二阶偏导之和为0
问题描述:
求证u=z arctan(x/y)中x,y,z的二阶偏导之和为0
主要是y的偏导给求不到一起,
答
u'x= z/(1+x^2/y^2)* 1/y=zy/(x^2+y^2)
u'y=z/(1+x^2/y^2)* (-x/y^2)=-zx/(x^2+y^2)
u'z=arctan(x/y)
u"xx=-2xyz/(x^2+y^2)^2
u"yy=2xyz/(x^2+y^2)/^2
u"zz=0
因此有u"xx+u"yy+u"zz=0谢谢(^3^)