∫ (tant)的3次方 / √sect dx 求详解
问题描述:
∫ (tant)的3次方 / √sect dx 求详解
答
∫ [(tan³t)/√sect ]dt,求详解
令sect=u²,则tant=√(sec²t-1)=√(u⁴-1),tan³t=(u⁴-1)^(3/2)
d(sect)=sect(tant)dt=2udu,故dt=2udu/secttant=2udu/[u²√(u⁴-1)];
故原式=2∫ [(u⁴-1)/u²]du=2[∫u²du-∫du/u²]=2[(2/3)u+1/u]+C=(4/3)√(sect)+[2/√(sect)]+C请问这是怎么来的?d(sect)=sect(tant)dt=2udu,故dt=2udu/secttant=2udu/[u²√(u⁴-1)];谢谢sect=u²,两边分别取微分得:d(sect)=d(1/cost)=(sint/cos²t)dt=(1/cost)(sint/cost)dt=sect(tant)dt=2udu