设X=Rcost,y=Rsint,求d2y/dx2 设x=ln∣sect+tant∣,y=ln∣cswt-cott∣求d2y/dx2
问题描述:
设X=Rcost,y=Rsint,求d2y/dx2 设x=ln∣sect+tant∣,y=ln∣cswt-cott∣求d2y/dx2
答
X=Rcost,y=Rsint,求d2y/dx2
d2y/dx2=sec^2*t/Rsint
x=ln∣sect+tant∣,y=ln∣csct-cott∣求d2y/dx2
dy/dx =cott
d2y/dx2 =-cot^2*t
具体过程由于太过繁琐未能写上!有问题私下解释吧!