已知x^4+2x^2-x+2恒等于(x^2+mx+2)(x^2+nx+1)求m与n的值

问题描述:

已知x^4+2x^2-x+2恒等于(x^2+mx+2)(x^2+nx+1)求m与n的值

x^2+mx+2)(x^2+nx+1)x^4+nx^3+x^2+mx^3+mnx^2+mx+2x^2+2nx+2=x^4+(n+m)x^3+(1+mn+2)x^2+(m+2n)x+2x^4+2x^2-x+2=x^4+(n+m)x^3+(1+mn+2)x^2+(m+2n)x+2各项x^n的系数相等:m+n=0 m=-n2=3+mn-1=m+2n n=-1 m=1