arctan(w平方除以(1-(w平方)))+arctanw/3=π/2

问题描述:

arctan(w平方除以(1-(w平方)))+arctanw/3=π/2

arctan(w^2/(1-w^2))+arctan(w/3)取正切得tan[arctan(w^2/(1-w^2))+arctan(w/3)]=[w^2/(1-w^2)+(w/3)]/[1-w^2/(1-w^2)*(w/3)]整理得分母=3-3w^2-w^3由于tan(π/2)为无穷大,无意义因此分母3-3w^2-w^3=0没有有理...