高数
问题描述:
高数
设U(n) 不等于 0 (n=1,2,3,,) 且 (n→无穷)lim n/U(n) =1,则级数(n=1)∑[(-1)^(n+1)] (1/U(n) + 1/U(n+1) ) 为什么是条件收敛的?
答
收敛是因为
Sn = 1/U(1) + 1/U(2) - 1/U(2) -1/U(3) .+ (-1)^(n+1)/U(n) + (-1)^(n+1)/U(n+1)
注意抵消规律有
Sn=1/U(1) + (-1)^(n+1)/U(n+1)
由lim n/U(n) =1有,Un→+∞,所以Sn→1/U(1)
不绝对收剑是因为
级数一般项取了绝对值= 1/U(n) + 1/U(n+1)
而lim (1/U(n) + 1/U(n+1))/(1/n) = lim n/U(n) + lim n/U(n+1) = 1+ lim n/(n+1) * (n+1)/U(n+1)=1+1=2
所以级数和1/n有相同的敛散性.
而1/n发散,所以发散.
从面条件收敛