当m为何值时 x³+y³+z³+mxyz能被x+y+z整除
问题描述:
当m为何值时 x³+y³+z³+mxyz能被x+y+z整除
答
可以这样想,就是设法提出x+y+z出来,采用降次的方法,x^3+y^3+z^3=x^2(x+y+z)+y^2(x+y+z)+z^2(x+y+z)-x^2(y+z)-y^2(x+z)-z^2(x+y)=(x^2+y^2+z^2)(x+y+z)-x^2(y+z)-y^2(x+z)-z^2(x+y)=(x^2+y^2+z^2)(...不是m=3吗?x^3+y^3+z^3这个式子等于(x^2+y^2+z^2)(x+y+z)-(xy+xz+yz)(x+y+z)+3xyz
而题目是x³+y³+z³+mxyz=(x^2+y^2+z^2)(x+y+z)-(xy+xz+yz)(x+y+z)+(m+3)xyz