已知cos(π/6-a)=√3/3,则cos(5/6π+a)-sin2(a-π/6)的值?
问题描述:
已知cos(π/6-a)=√3/3,则cos(5/6π+a)-sin2(a-π/6)的值?
sin2(a-π/6)那个2是平方昂~
答
cos(5/6*π+a)=-cos[π-(5/6*π+a)]=-cos[π/6-a]
-(sin[a-π/6])^2=(cos(a-π/6))^2-1
cos(π/6-a)=cos(a-π/6)
所以
cos(5/6π+a)-(sin(a-π/6))^2
= -√3/3+1/3-1
= -(2+√3)/3