已知tan(α+β)=25,tan(α+π4)=322,则tan(β−π4)等于(  ) A.15 B.14 C.1318 D.1322

问题描述:

已知tan(α+β)=

2
5
,tan(α+
π
4
)=
3
22
,则tan(β−
π
4
)
等于(  )
A.
1
5

B.
1
4

C.
13
18

D.
13
22

由于tan(α+β)=-1,tan(α+

π
4
)=
3
22

∴tan(β
π
4
)=tan[(α+β)-(α+
π
4
)]=
tan(α+β)−tan(α+
π
4
)
1+tan(α+β)tan(α+
π
4
)
=
2
5
3
22
1+
2
5
×
3
22
=
1
4

故选B.