已知tan(α+β)=25,tan(α+π4)=322,则tan(β−π4)等于( ) A.15 B.14 C.1318 D.1322
问题描述:
已知tan(α+β)=
,tan(α+2 5
)=π 4
,则tan(β−3 22
)等于( )π 4
A.
1 5
B.
1 4
C.
13 18
D.
13 22
答
由于tan(α+β)=-1,tan(α+
)=π 4
3 22
∴tan(β−
)=tan[(α+β)-(α+π 4
)]=π 4
=tan(α+β)−tan(α+
)π 4 1+tan(α+β)tan(α+
)π 4
=
−2 5
3 22 1+
×2 5
3 22
1 4
故选B.