概率论的应用题 求解答 急~!
概率论的应用题 求解答 急~!
1. 一个自动报警器由雷达和计算机两部分组成,两部分有任何一个失灵,这个报警器就失灵,若使用100小时后,雷达失灵的概率为0.1,计算机失灵的概率为0.2,若两部分失灵与否独立,求这个报警器使用100小时而不失灵的概率.
2.甲、乙、丙三人各射一次靶,他们各自中靶与否相互独立,且已知他们各自中靶的概率分别为0.5、0.6、0.7,求至少有一个人中靶的概率.
5.高射炮向敌机发射三发炮弹(每弹击中与否相互独立),设每发炮弹击中敌机的概率均为0.3.又知若敌机中一弹,其坠落的概率为0.2;若敌机中两弹,其坠落的概率为0.6,若敌机中三弹则必然坠落.(1)求敌机被击落的概率;(2)若敌机被击落,求它中两弹的概率.
6.已知电源电压X服从正态分布N( ),在电源电压处于X ,200V ,X 三种情况下,某电子元件损坏的概率分别为0.1、0.01、0.2,求(1)该电子元件损坏的概率;(2)该电子元件损坏时,电源电压在200~240V的概率.
7.设(X,Y)服从G= 上的均匀分布,
求(1)(X,Y)密度函数;(2)X和Y的边缘密度函数和边缘分布函数.
8.设(X,Y)服从G= 上的均匀分布,
求(1)(X,Y)密度函数;(2)X和Y的边缘密度函数和边缘分布函数.
下面两题打不出大括号 应该看得懂吧?
3.设随机变量X的分布函数为 F(x)=0x
6.已知电源电压X服从正态分布N(220,25的二次方),在电源电压处于X
1.一个自动报警器由雷达和计算机两部分组成,两部分有任何一个失灵,这个报警器就失灵,若使用100小时后,雷达失灵的概率为0.1,计算机失灵的概率为0.2,若两部分失灵与否独立,求这个报警器使用100小时而不失灵的概率.
设事件 A ={ 使用100小时后雷达没有失灵 } ,
事件 B ={ 使用100小时后计算机未失灵 } ,
则所求概率为
P{A} P{B} = [1 - P{A逆}] [1 - P{B逆}] = (1 - 0.1) (1 - 0.2) = 0.72 .
2.甲、乙、丙三人各射一次靶,他们各自中靶与否相互独立,且已知他们各自中靶的概率分别为0.5、0.6、0.7,求至少有一个人中靶的概率.
设事件A = { 甲射中靶 } ,事件B = { 乙射中靶 },事件C = { 丙射中靶 }.
则所求概率为
1 - [1 - P(A)] [1 - P(B)] [1 - P(C)]
= 1 - (1 - 0.5) (1 - 0.6) (1 - 0.7) = 0.94 .
3.设随机变量X的分布函数为
F(x) = 0 ,x 5} = 1 - P{X