棱台的体积如何证明?
问题描述:
棱台的体积如何证明?
答
棱台体积公式为v=(1/3)H[S'+√(SS')+S] (√为根号,表示开平方.)证明:将上底面积为S',下底面积为S,高为H的棱台的母线延长,得一顶点为P的完整的棱锥P-S,设延长部分的高为X,那么,棱台的体积V=(1/3)(H+X)S-(1/3)*XS'=(1/...
棱台的体积如何证明?
棱台体积公式为v=(1/3)H[S'+√(SS')+S] (√为根号,表示开平方.)证明:将上底面积为S',下底面积为S,高为H的棱台的母线延长,得一顶点为P的完整的棱锥P-S,设延长部分的高为X,那么,棱台的体积V=(1/3)(H+X)S-(1/3)*XS'=(1/...