设m,n满足m^2+n^2+2m+4n+5=0,求n^m的值
问题描述:
设m,n满足m^2+n^2+2m+4n+5=0,求n^m的值
答
(m+1)^2+(n+2)^2=0
=>m=-1,n=-2
n^m=-1/2
答
原式=m^2+2m+1+n^2+4n+4=0
(m+1)^2+(n+2)^2=0
m=-1 n=-2
n^m=(-2)^(-1)=-1/2
答
m^2+n^2+2m+4n+5=0
(m+1)^2+(n+2)^2=0
所以(m+1)^2=0,(n+2)^2=0
所以m+1=0,n+2=0
m=-1,n=-2
n^m=(-2)^(-1)=-1/2