用待定系数法求微分方程的通解y''-4y'+4y=(1+x+x^2+...+x^23)e^2x(不要用微分算子哦),

问题描述:

用待定系数法求微分方程的通解y''-4y'+4y=(1+x+x^2+...+x^23)e^2x(不要用微分算子哦),

设方程特解为:y*=p(x)e^λx ,则:
y''-4y'+4y=[p''+(2λ-4)p'+(λ^2 -4λ+4)p]e^λx =(1+x+x^2+...+x^23)e^2x
特征方程有二重根 λ=2;2λ-4=0 ; λ^2 -4λ+4=0
p''=1+x+x^2+...+x^23 且:p(x)=x^2*Q(23)(x) 【Q(23)(x)为23次多项式】
p(x)=x^3/2*3 + x^4/3*4 +...+x^25/24*25
微分方程的通解:
y=e^2x(c1+c2*x + x^3/2*3+x^4/3*4+...+x^25/24*25)