已知函数f(x)=|x+1|+|x-3|.⑴解不等式f(x)≤6;
问题描述:
已知函数f(x)=|x+1|+|x-3|.⑴解不等式f(x)≤6;
⑵若存在x,使f(x)+a≤0成立,求a范围.
答
|x+1|:在数轴上表示x与-1之间的距离;
|x-3|:在数轴上表示x与3之间的距离.
则:
f(x)=|x+1|+|x-3|:在数轴上表示x与-1和3的之间的距离之和.
所以f(x)的最小值是4
f(x)≤6,结合数轴,得:-2≤x≤5
要使得f(x)≤-a恒成立,则:-a≥f(x)的最小值【本题是存在,只要最小值即可】,得:
-a≥4
a≤-4