证明题:f'(ξ)/g'(ξ)=[f(ξ)-f(a)]/[g(b)-g(ξ)]
问题描述:
证明题:f'(ξ)/g'(ξ)=[f(ξ)-f(a)]/[g(b)-g(ξ)]
设f(x),g(x)都在[a,b]上连续,且在(a,b)内可微,又对于(a,b)内的x有g'(x)≠0,则在(a,b)内至少存在一点ξ,使f'(ξ)/g'(ξ)=[f(ξ)-f(a)]/[g(b)-g(ξ)]成立
答
令 F(x)=f(x)g(x) - f(a)g(x) - g(b)f(x)
F(a) = -g(b)f(a) = F(b)
罗尔定理知,
在(a,b)内存在一点ξ,使
F'(ξ)=0,即
f'(ξ)g(ξ) + f(ξ)g'(ξ) - f(a)g'(ξ) - g(b)f'(ξ) = 0,
变形即可得结果.