求证三角形三条高所在直线交于一点.
问题描述:
求证三角形三条高所在直线交于一点.
最好有图.
答
三角形ABC中,AC、AB上的高为BE和CF.
显然三角形ABE相似于三角形ACF,故有AB/AC=AE/AF,即AF*AB=AE*AC (1)
过A作三角形ABC的高AD,分别交BE,CF,AB于O1,O2,D.
由三角形AFO2相似于三角形ADB得:AF/AO2=AD/AB,即AF*AB=AO2*AD (2)
由三角形AEO1相似于三角形ADC得:AE/AO1=AD/AC,即AE*AC=AO1*AD (3)
根据等式(1)(2)(3)有
AO1*AD=AO2*AD,
所以AO1=AO2,O1、O2重合,记重合点为O点,则O点均在高AD,BE,CF上,所以三角形ABC得三条高交于一点O.