lim(n趋向于正无穷)n^2(a^1/n-a^1/(n+1)](a>0)的值

问题描述:

lim(n趋向于正无穷)n^2(a^1/n-a^1/(n+1)](a>0)的值

为简便记略去极限号原式=n²[a^{1/n-1/(n+1)}-1]a^{1/(1+n)}=n²[a^{1/n(n+1)}-1]=n²×1/n(n+1)×lna=lna第二个等号是因为a^{1/(1+n)}极限为1第三个等号用了等价无穷小:a^x-1~xlna (x->0)...