设f(x)在闭区间[0,1]上连续,f(0)=f(1),证明存在x0属于[0,n-1/n],使得 f(x0)=f(x0+1/n)

问题描述:

设f(x)在闭区间[0,1]上连续,f(0)=f(1),证明存在x0属于[0,n-1/n],使得 f(x0)=f(x0+1/n)



敬请及时采纳,回到你的提问页,点击我的回答,在右上角点击“评价”,然后就可以选择“满意,问题已经完美解决”了.
另外发并点击我的头像向我求助,请谅解,