计算:sin² 15°+tan15°·tan75°-cot15°·cot90°+sin² 75°的值是?
问题描述:
计算:sin² 15°+tan15°·tan75°-cot15°·cot90°+sin² 75°的值是?
答
原式=(sin15)^2+tan15*tan(90-15)-cot15*0+[sin(90-15)]^2
=(sin15)^2+tan15*cot15-cot15*0+(cos15)^2
=[(sin15)^2+(cos15)^2]+tan15*1/tan15-0
=1+1-0
=2