若a.b∈R+,且a+b=1,求证:ab≤1/4,并指出等号成立的条件
问题描述:
若a.b∈R+,且a+b=1,求证:ab≤1/4,并指出等号成立的条件
答
证明:∵2ab≤a^2+b^2
即4ab≤a^2+2ab+b^2 (因a.b∈R+,所以可以直接乘,符号不变向)
4ab≤(a+b)^2
ab≤((a+b)^2)/4
又∵a+b=1
∴ab≤1/4
当a=b时,等号成立.