为什么常系数齐次线性微分方程的解一定要写成两个线性无关的和,如果由特征方程解出重根只写一个不行吗?

问题描述:

为什么常系数齐次线性微分方程的解一定要写成两个线性无关的和,如果由特征方程解出重根只写一个不行吗?

因为解空间的维数等于阶数,也就是说,通解中任意常数的个数要等于阶数.比如二阶的,解空间维数是2,需要写成两个线性无关的特解的线性和,才能有2个任意常数.你得到重根r0,那么通解就是y=(C1+C2*x)*e^(r0x),而只写y=C1*e^(r0x)是不完全的,这的确是个解,但不是通解.