如图,等边三角形ABC中,D是AB边上的动点,以CD为一边,向上作等边三角形EDC,连接AE. 求证:(1)△ACE≌△BCD;(2)AE∥BC.
问题描述:
如图,等边三角形ABC中,D是AB边上的动点,以CD为一边,向上作等边三角形EDC,连接AE.
求证:(1)△ACE≌△BCD;(2)AE∥BC.
答
证明:(1)∵△ABC与△EDC是等边三角形,
∴∠ACB=∠DCE=60°,AC=BC,DC=EC.
又∵∠BCD=∠ACB-∠ACD,∠ACE=∠DCE-∠ACD,
∴∠BCD=∠ACE.
∴△ACE≌△BCD.
(2)∵ACE≌△BCD,
∴∠ABC=∠CAE=60°,
又∵∠ACB=60°,
∴∠CAE=∠ACB,
∴AE∥BC.