若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是( )A. f(x)-1是奇函数B. f(x)-1是偶函数C. f(x)+1是奇函数D. f(x)+1是偶函数
问题描述:
若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是( )
A. f(x)-1是奇函数
B. f(x)-1是偶函数
C. f(x)+1是奇函数
D. f(x)+1是偶函数
答
∵对任意x1,x2∈R有
f(x1+x2)=f(x1)+f(x2)+1,
∴令x1=x2=0,得f(0)=-1
∴令x1=x,x2=-x,得f(0)=f(x)+f(-x)+1,
∴f(x)+1=-f(-x)-1=-[f(-x)+1],
∴f(x)+1为奇函数.
故选C
答案解析:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,考察四个选项,本题要研究函数的奇偶性,故对所给的x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1进行赋值研究即可
考试点:函数奇偶性的判断.
知识点:本题考查函数的性质和应用,解题时要认真审题,仔细解答.