已知函数f(x)=lg(ax-1)-lg(x-1),在[10,正无穷)上为单调增函数,求实数a的取值范围,谢谢!
问题描述:
已知函数f(x)=lg(ax-1)-lg(x-1),在[10,正无穷)上为单调增函数,求实数a的取值范围,谢谢!
答
f(x)=lg[(ax-1)/(x-1)]
看真数即可
令u(x)=(ax-1)/(x-1)=[a(x-1)+a-1]/(x-1)=a+(a-1)/(x-1)
要在[10,+∞)上递增,则a-10,得:a>1/10
所以,实数a的取值范围是(1/10,1)