(log2(3)+log4(9)+……+log2^n(3^n))·log9(n次根号8)=
问题描述:
(log2(3)+log4(9)+……+log2^n(3^n))·log9(n次根号8)=
答
log2^n(3^n)=log2(3)
log2(3)+log4(9)+……+log2^n(3^n)=nlog2(3)
log9(n次根号8)=1/nlog9(8)=1/n*3/2*log3(2)
(log2(3)+log4(9)+……+log2^n(3^n))·log9(n次根号8)
=nlog2(3)*1/n*3/2*log3(2)
=3/2