集合S=﹛0,1,2,3,4,5﹜,A是S的一个子集,当x∈A时,若有x-1不属于A,且x+1不属于A,

问题描述:

集合S=﹛0,1,2,3,4,5﹜,A是S的一个子集,当x∈A时,若有x-1不属于A,且x+1不属于A,
则则称x为A的一个“孤立元素”,那么那么S中无“孤立元素”的4个元素的子集个数是多少?
想问解决类似问题的技巧.谢谢
题目是这样分析的:由题意可知,一个集合中由相邻数字构成的元素都不是“孤立元素”,则S中"无孤立元素"的含有4个元素的子集可分为两类:第一类是子集中的4个元素为相邻的四个数字,有﹛0,1,2,3,﹜,﹛1,2,3,4﹜,﹛2,3,4,5﹜,三个;第二类是子集中的四个元素分为两组,每一组的两个元素为相邻的两个数字,有﹛0,1,3,4﹜,﹛0,1,4,5﹜﹛1,2,4,5﹜,共六个.
我想问是怎么理解这些?

比如说相邻数字1和2都是集合A的元素,即1∈A,2∈A则1+1=2∈A,2-1=1∈A,所以此时1和2都不是“孤立元素”,故有结论:一个集合中由相邻数字构成的元素都不是“孤立元素”例如:A={1,3,4,5﹜中的元素1,与它相邻的两个数字...