己知a^3m=,b^3n=2,求(a^2m)^3+(b^n)^3-a^2m·b^n·a^4m·b^2n的值

问题描述:

己知a^3m=,b^3n=2,求(a^2m)^3+(b^n)^3-a^2m·b^n·a^4m·b^2n的值

(a^2m)^3=(a^3m )^2=9,(b^n)^3=b^3n=2,
a^2m×b^n×a^4m×b^2n=a^(2m+4m)xb^(2n+n)=a^6m x b^3n =9x2=18
最后就是9+2-18=-7

(a^2m)^3+(b^n)^3-a^2m×b^n×a^4m×b^2n
=a^6m+b^3n-a^6m*b^3n
=(a^3m)^2+b^3n-(a^3m)^2*b^3n
=9+2-9*2
=-7