如图,已知⊙O中,直径MN=10,正方形ABCD的四个顶点分别在半径OM、OP以及⊙O上,并且∠POM=45°,则AB的长为(  ) A.5 B.4 C.3 D.5

问题描述:

如图,已知⊙O中,直径MN=10,正方形ABCD的四个顶点分别在半径OM、OP以及⊙O上,并且∠POM=45°,则AB的长为(  )
A. 5
B. 4
C. 3
D.

5

∵ABCD是正方形,
∴∠DCO=90°,
∵∠POM=45°,
∴∠CDO=45°,
∴CD=CO,
∴BO=BC+CO=BC+CD,
∴BO=2AB,
连接AO,
∵MN=10,
∴AO=5,
在Rt△ABO中,
AB2+BO2=AO2
AB2+(2AB)2=52
解得:AB=

5

则AB的长为
5

故选D.