有一块长24厘米的正方形厚纸片,如果在它的四个角各剪去一个小正方形,就可以做成一个无盖的纸盒,要使做成的纸合容积最大,剪去的小正方形的边长应为几厘米?

问题描述:

有一块长24厘米的正方形厚纸片,如果在它的四个角各剪去一个小正方形,就可以做成一个无盖的纸盒,要使做成的纸合容积最大,剪去的小正方形的边长应为几厘米?

如图
设剪去的小正方形边长为x厘米,
则纸盒容积为:V=x(24-2x)(24-2x),
=2×2x(12-x)(12-x)
因2x+(12-x)+(12-x)=24,
故当2x=12-x时,其乘积最大,
2x=12-x,
3x=12,
x=4,
即x=4时,其乘积最大即纸盒容积也最大.
答:剪去的小正方形的边长应为4厘米.