设直线L1:A1X+B1Y+C1=0关于直线L2:A2X+B2Y+C2=0对称的直线为L3:A3X+B3Y+C3=0已知A1、B1、C1、A2、B2、C2,

问题描述:

设直线L1:A1X+B1Y+C1=0关于直线L2:A2X+B2Y+C2=0对称的直线为L3:A3X+B3Y+C3=0已知A1、B1、C1、A2、B2、C2,

先求出两已知直线的交点,此点必然也在所求直线上,再在对称的已知直线上任取一点M,找出它关于另一条直线的对称点M'(先设M'的坐标,求MM'所在直线的斜率,让其与另一条直线斜率乘积为-1,再用中点公式,让MM'的中点满足对称轴直线方程,由此两条件可求得M'),最后由两点式便可求出对称直线方程