如图,正方形ABCD的对角线交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长相等.试证明:无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的14.
问题描述:
如图,正方形ABCD的对角线交于点O,点O又是正方形A1B1C1O的一个顶点,而且这两个正方形的边长相等.试证明:无论正方形A1B1C1O绕点O怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的
.1 4
答
(1)当正方形绕点OA1B1C1O绕点O转动到其边OA1,OC1分别于正方形ABCD的两条对角线重合这一特殊位置时,显然S两个正方形重叠部分=14S正方形ABCD;(2)当正方形绕点OA1B1C1O绕点O转动到如图位置时.∵四边形ABCD为正...
答案解析:分两种情况探讨:(1)当正方形A1B1C1O边与正方形ABCD的对角线重合时;(2)当转到一般位置时,由题求证△AEO≌△BOF,故两个正方形重叠部分的面积等于三角形ABO的面积,得出结论.
考试点:正方形的性质;全等三角形的判定与性质.
知识点:此题考查正方形的性质,三角形全等的判定与性质,三角形的面积等知识点.