如图,MN∥PQ,直线l分别交MN、PQ于点A、C,同旁内角的平分线AB、CB相交于点B,AD、CD相交于点D.试证明四边形ABCD是矩形.
问题描述:
如图,MN∥PQ,直线l分别交MN、PQ于点A、C,同旁内角的平分线AB、CB相交于点B,AD、CD相交于点D.试证明四边形ABCD是矩形.
答
证明:∵MN∥PQ,∴∠MAC=∠ACQ、∠ACP=∠NAC,∵AB、CD分别平分∠MAC和∠ACQ,∴∠BAC=12∠MAC、∠DCA=12∠ACQ,又∵∠MAC=∠ACQ,∴∠BAC=∠DCA,∴AB∥CD,∵AD、CB分别平分∠ACP和∠NAC,∴∠BCA=12∠ACP、∠DAC...