sinx展开麦克劳林级数,结果是sin(x+nπ/2)
问题描述:
sinx展开麦克劳林级数,结果是sin(x+nπ/2)
答
令y=sinx
y '=cosx=sin(x+π/2)
y ''=(sin(x+π/2))'=cos(x+π/2)=sin(x+π)
y'''=(sin(x+π))'=cos(x+π)=sin(x+3π/2)
以此类推
y的n阶导数为sin(x+nπ/2)