将函数f(x)=sinx展开成(x-π/4)的幂级数这样做:f(x)=sinx=sin(x-π/4+π/4)=根号2/2(sin(x-π/4)+cos(x-π/4))再讲x-π/4直接代入sinx和cosx的麦克劳林展开式中行不?
问题描述:
将函数f(x)=sinx展开成(x-π/4)的幂级数
这样做:f(x)=sinx=sin(x-π/4+π/4)=根号2/2(sin(x-π/4)+cos(x-π/4))
再讲x-π/4直接代入sinx和cosx的麦克劳林展开式中行不?
答
可以的.因为sinx和cosx的麦克劳林公式对所有实数都成立.