1.一个凸多边形有20条对角线,问是几边形?为什么?是否有18条对角线的多边形,有或没有都为什么?
问题描述:
1.一个凸多边形有20条对角线,问是几边形?为什么?是否有18条对角线的多边形,有或没有都为什么?
2.P取任何值(x-3)(x-2)-p2=0总有两个不等的实数根吗?注:p2是p的平方哈.
答
凸N边形 任一一点 能与之连成对角线的 还有N-3个点 所以共有N(N-3)条
但是有重复的 每条都数了两遍 所以
凸N边形有N(N-3)/2条对角线
N(N-3)/2=20 得N=8 所以是8边形
如果N(N-3)/2=18 没有整数解 所以没有对角线为18条的多边形
x^2-5x+6-p^2 判别式=25-24+4p^2=4p^2+1>0 所以方程总有两个不等的实根