设函数f(x)=sinx+√3cosx,x属于[0,4π/3],求直线y=√3与函数y=f(x)图像的焦点坐标√3),(π/3,
问题描述:
设函数f(x)=sinx+√3cosx,x属于[0,4π/3],求直线y=√3与函数y=f(x)图像的焦点坐标
√3),(π/3,
答
f(x)=sinx+√3cosx=2sin(x+π/3)
当y=√3时
√3=2sin(x+π/3)
√3/2=sin(x+π/3)
x+π/3=π/3
x+π/3=2π/3
解得x=0 x=π/3