设二维随机变量(X,Y)的概率密度为f(x,y)={e^[-(x+y)],x.>0,y>0;0其他},则当y>0时,(X,Y)关于Y的边缘概率密度 答案的过程如何求解?
问题描述:
设二维随机变量(X,Y)的概率密度为f(x,y)={e^[-(x+y)],x.>0,y>0;0其他},则当y>0时,(X,Y)关于Y的边缘概率密度
答案的过程如何求解?
答
哇塞,大学概率呀?不过我的答案会让您很失望,我补考了2次才过的。
答
cfgh
答
根据y边缘密度函数
fY(y)=∫0+∞(就是0到正无穷的积分 下面一样)(乘以)f(x,y)dx
得
当y>0时 有
f(y)=∫0+∞e^[-(x+y)]dx= e^[-y]∫0+∞e^[-x]dx= e^[-y](-e^[-x]∣0+∞)= e^[-y](0+1)= e^[-y]
当y