若a>0,b>0,a+b+ab=4,a+2b+3的最小值

问题描述:

若a>0,b>0,a+b+ab=4,a+2b+3的最小值

a+b+ab=4解得b=(4-a)/(a+1)
所以a+2b+3
=a+2(4-a)/(a+1)+3
=a+1+2[5-(a+1)]/(a+1)+2
=a+1+10/(a+1)
≥2√[(a+1)*10/(a+1)]
=2√10