设a,b,c为互不相等的非零实数,求证:方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0不可能都有两个相等的实数根.
问题描述:
设a,b,c为互不相等的非零实数,求证:方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0不可能都有两个相等的实数根.
答
证明:假设题中的三个方程都有两个相等的实数根,不妨设这三个方程的根的判别式为△1,△2,△3,
则有
.
△1=4b2−4ac=0 ①
△2=4c2−4ab=0 ②
△3=4a2−4bc=0 ③
由①+②+③得:a2+b2+c2-ab-ac-bc=0,
有2a2+2b2+2c2-2ab-2ac-2bc=0,
即(a-b)2+(b-c)2+(c-a)2=0,
∴a=b=c,这与已知a,b,c为互不相等的非零实数矛盾,
故题中的三个方程不可能都有两个相等的实数根.