一元一次方程与分式方程有什么区别?

问题描述:

一元一次方程与分式方程有什么区别?

一元一次方程:通过化简,只含有一个未知数,且含有未知数的最高次项的次数是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b为常数,且a≠0)。一元一次方程属于整式方程,即方程两边都是整式。一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数必须是1。即一元一次方程必须同时满足4个条件:⑴它是等式;⑵分母中不含有未知数;⑶未知数最高次项为1; ⑷含未知数的项的系数不为0。
数学术语  等号两边至少有一个分母含有未知数的有理方程叫做分式方程。
分式方程概念
  分式方程是方程中的一种,且分母里含有未知数的(有理)方程叫做分式方程(fractional equation)。例如100/x=95/x+0.35
  补充:该部分知识属于初等数学知识,一般在初二的时候学习。(人教版八年级下册数学十六章的16.3中出现 26页)
分式方程的解法①去分母
  方程两边同时乘以最简公分母(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂),将分式方程化为整式方程;若遇到互为相反数时.不要忘了改变符号。
②按解整式方程的步骤
  移项,若有括号应去括号,注意变号,合并同类项,把系数化为1 求出未知数的值;
③验根
  求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根.
  验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根。否则这个根就是原分式方程的根。若解出的根是增根,则原方程无解。
  如果分式本身约分了,也要带进去检验。
  在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。
  一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.

没啥区别,都是方程,一个分数