一道今天要答案的数学题1/(x+1)-1/(x+2)-1(x+3)+1/(x+4)
问题描述:
一道今天要答案的数学题
1/(x+1)-1/(x+2)-1(x+3)+1/(x+4)
答
1/(x+1)-1/(x+2)-1(x+3)+1/(x+4)
=[1/(x+1)+1/(x+4)]-[1/(x+2)+1(x+3)]
=(2x+5)[1/(x+1)(x+4)-1/(x+2)(x+3)]
=(2x+5)(6-4)/[(x+1)(x+4)(x+2)(x+3)]
=(4x+10)/[(x+1)(x+4)(x+2)(x+3)]
答
把整个式子同时乘于(x+1)(x+2)(x+3)(x+4)同时除于(x+1)(x+2)(x+3)(x+4)仔细观察分子上的算式,其实很简单的,大概写一下:分母为(x+1)(x+2)(x+3)(x+4)分子为(x+2)(x+3)(x+4)-(x+1)(x+3)(x+4)-(x+1)(x+2)(x+4)+(x+1)(x+2...