如图,已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D.(1)求抛物线的解析式;(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y轴的交点为B1,顶点为D1,若点N在平移后的抛物线上,且满足△NBB1的面积是△NDD1面积的2倍,求点N的坐标.

问题描述:

如图,已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D.
作业帮
(1)求抛物线的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式;
(3)设(2)中平移后,所得抛物线与y轴的交点为B1,顶点为D1,若点N在平移后的抛物线上,且满足△NBB1的面积是△NDD1面积的2倍,求点N的坐标.

(1)已知抛物线y=x2+bx+c经过A(1,0),B(0,2),∴0=1+b+c2=0+0+c,解得b=-3c=2,∴所求抛物线的解析式为y=x2-3x+2;(2)∵A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y...
答案解析:(1)利用待定系数法,将点A,B的坐标代入解析式即可求得;
(2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2,
可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2-3x+1;
(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想.
考试点:二次函数综合题.


知识点:此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.
此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.