若x∈(−5π12, −π3),则y=tan(x+2π3)-tan(x+π6)+cos(x+π6)最大值是( ) A.1225 B.1126 C.1136 D.1235
问题描述:
若x∈(−
, −5π 12
),则y=tan(x+π 3
)-tan(x+2π 3
)+cos(x+π 6
)最大值是( )π 6
A.
12
2
5
B.
11
2
6
C.
11
3
6
D.
12
3
5
答
y=tan(x+
)-tan(x+2π 3
)+cos(x+π 6
)π 6
=tan(x+
)+cot(x+2π 3
)+cos(x+2π 3
)π 6
=
+cos(x+1 cos(x+
)sin(x+2π 3
)2π 3
) π 6
=
+cos(x+2 sin(2x+
)4π 3
) π 6
因为x∈(−
, −5π 12
),π 3
所以2x+
∈[4π 3
,π 2
],2π 3
x+
∈[−π 6
,−π 4
],π 6
可见
,cos(x+2 sin(2x+
)4π 3
) 在定义域内同为递增函数,π 6
故当x=-
时,y取最大值π 3
.11
3
6
故选C.