若x∈(−5π12, −π3),则y=tan(x+2π3)-tan(x+π6)+cos(x+π6)最大值是(  ) A.1225 B.1126 C.1136 D.1235

问题描述:

若x∈(−

12
, −
π
3
),则y=tan(x+
3
)-tan(x+
π
6
)+cos(x+
π
6
)最大值是(  )
A.
12
2
5

B.
11
2
6

C.
11
3
6

D.
12
3
5

y=tan(x+

3
)-tan(x+
π
6
)+cos(x+
π
6

=tan(x+
3
)+cot(x+
3
)+cos(x+
π
6

=
1
cos(x+
3
)sin(x+
3
)
+cos(x+
π
6

=
2
sin(2x+
3
)
+cos(x+
π
6

因为x∈(−
12
, −
π
3
)

所以2x+
3
∈[
π
2
3
]

x+
π
6
[−
π
4
,−
π
6
]

可见
2
sin(2x+
3
)
,cos(x+
π
6
) 在定义域内同为递增函数,
故当x=-
π
3
时,y取最大值
11
3
6

故选C.