gaokao难度
问题描述:
gaokao难度
一.f(x)=1+ln(1+x) 就是/x
-----------
x
1.求在(0,正无穷)上是增还是减,证明
2.当x>0时,f(x)>k/(x+1)恒成立,求正整数k的最大值
二.已知f(x)=X^2*e^ax 其中a
答
f(x)=[1+ln(1+x)]/x
f'(x)=1/[x(1+x)]-[1+ln(1+x)]/x^2
=[x-(1+x)-xln(1+x)]/[x^2(1+x)]
=-[1+xln(1+x)]/[x^2(1+x)]所以在(0,+∞)上f(x)是减函数
f(x)=[1+ln(1+x)]/x>k/(x+1)
令g(x)=f(x)*(x+1)=[1+ln(1+x)](x+1)/x>k
g'(x)=f(x)+f'(x)(x+1)
=[1+ln(1+x)]/x-[1+xln(1+x)]/x^2
=(x-1)/x^2=0
x=1时g(x)取极小值
g(1)=2(1+ln2)=2+ln4
因为,3所以,k最大取3
f(x)=x^2*e^(ax)
f'(x)=2xe^(ax)+ax^2e^(ax)=e^(ax)x(2+ax)
令g(x)=x(2+ax),
若a≠0
i.xii.0
iii.x>-2/a时,g(x)若a=0
g(x)=2x
i.xii.x>0时,g(x)>0,f'(x)>0,f(x)增函数
i.若-2/a>=1 => -2f(x)在[0,1]上增函数
maxf(x)=f(1)=e^a
这里也可以把a=0的情况包括进来
即,-2ii.若0 af(x)在[0,1]上的极大值在-2/a处
maxf(x)=f(-2/a)=4/(ae)^2