已知集合A={x/x^2-x=o},B={x/ax^2-2x+4=o},且A交B=B,求a的取值范围
问题描述:
已知集合A={x/x^2-x=o},B={x/ax^2-2x+4=o},且A交B=B,求a的取值范围
答
集合A={0,1}
因为A交B=B,所以B=∮(空集)或{0}或{1}或{0,1}
(1)若B=∮,则a>1/4
(2)若B={0},则a无解
(3)若B={1},则a=-2,此时B={1,-2}不符合题意,舍去
(4)若B={0,1},则a无解
综上所述,a的取值范围为{a|a>1/4}
答
A={x|x^2-x=0}
= {x|x(x-1)=0}
= {0,1}
A∩B=B => B is subset of A
when x=0 ,B={x|ax^2-2x+4=0}
4=0 (rejected)
when x=1
a-2+4=0
a= -2 #
答
解;
∵A={x/x^2-x=o}
∴A={1,0}
∵A交B=B
则A包含B
B为空集或{1}或{0}或{1,0}
当B为{1}或{0}或{1,0}时,答案不符
当B为空集时a>1/4
综上a>1/4