(3a^2+b^2)y^2+4√3b^2y-3b^4=0,并且a^2=16+b^2,求y等于多少?
问题描述:
(3a^2+b^2)y^2+4√3b^2y-3b^4=0,并且a^2=16+b^2,求y等于多少?
答
首先,(3a^2+b^2)y^2≥0 ;4√3b^2y-3b^4≥0 ,两者的和=0.故(3a^2+b^2)y^2=0(式1)且4√3b^2y-3b^4=0(式2)
由式1.如y≠0.则两边除以y^2.得3a^2+b^2=0.同理3a^2≥0;b^2≥0。两者和=0,则3a^2=b^2=0
得a=0,b=0.这与a^2=16+b^2不符
故y=0