已知x 加y=3,a加b=5,xy=1,ab=3,且 m=ax加by,n=bx加ay,求m的平方乘以n的平方

问题描述:

已知x 加y=3,a加b=5,xy=1,ab=3,且 m=ax加by,n=bx加ay,求m的平方乘以n的平方

m²+n²=(ax+by)²+(bx+ay)²=x²(a²+b²)+y²(a²+b²)+4xyab
=(x²+y²)(a²+b²)+4*(xy)(ab)
=[(x+y)²-2xy][(a+b)²-2ab]+4*1*3
=(9-2)(25-2*3)+12
=7*19+12
=145

x+y=3,a+b=5,xy=1,ab=3,m=ax+by,n=bx+ay
m²+n²=(ax+by)²+(bx+ay)²=x²(a²+b²)+y²(a²+b²)+4xyab
=(x²+y²)(a²+b²)+4*(xy)(ab)
=[(x+y)²-2xy][(a+b)²-2ab]+4*1*3
=(9-2)(25-2*3)+12
=7*19+12
=145
答:为145