在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积之和的14,且样本容量为160,则中间一组的频数为______.

问题描述:

在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积之和的

1
4
,且样本容量为160,则中间一组的频数为______.

设中间一个小长方形的面积为x,其他10个小长方形的面积之和为y,
则有:

x=
1
4
y
x+y=1

解得:x=0.2,
∴中间一组的频数=160×0.2=32.
故填:32.
答案解析:由频率分布直方图分析可得“中间一个小长方形”对应的频率,再由频率与频数的关系,中间一组的频数.
考试点:频率分布直方图.
知识点:本题是对频率、频数灵活运用的考查,各小组频数之和等于数据总和,各小组频率之和等于1.频率、频数的关系:频率=
频数
数据总和