两个非零极限函数做商比较趋近快慢的请教,当x趋于非零a时,f(x),g(x)极限都等于非零A,那么(1)他们商的极限是否是1 (2)它们趋于A时有快慢么?如有,那怎么体现谁快谁慢?是否想本例一样做商还是有什么其他方法?(3)无穷小有趋近的快慢现象,本例中怎么理解它们趋近的快慢现象.
问题描述:
两个非零极限函数做商比较趋近快慢的请教,
当x趋于非零a时,f(x),g(x)极限都等于非零A,那么(1)他们商的极限是否是1 (2)它们趋于A时有快慢么?如有,那怎么体现谁快谁慢?是否想本例一样做商还是有什么其他方法?(3)无穷小有趋近的快慢现象,本例中怎么理解它们趋近的快慢现象.
答
(1)是 但f(x),g(x)不趋于0,所以并不是无穷小
(2)有 要比较谁快谁慢可以比较他们的导数绝对值,大的快,小的慢
(3)这个例子应该是求(f(x)-A)/(g(x)-A)的极限假设其极限为L
如果L>1,则下面的趋于零快些L