如图,在平面直角坐标系中,O为坐标原点.二次函数y=-x2+bx+3的图象经过点A(-1,0),顶点为B.(1)求这个二次函数的解析式,并写出顶点B的坐标;(2)如果点C的坐标为(4,0),AE⊥BC,垂足为点E,点D在直线AE上,DE=1,求点D的坐标.
问题描述:
如图,在平面直角坐标系中,O为坐标原点.二次函数y=-x2+bx+3的图象经过点A(-1,0),顶点为B.
(1)求这个二次函数的解析式,并写出顶点B的坐标;
(2)如果点C的坐标为(4,0),AE⊥BC,垂足为点E,点D在直线AE上,DE=1,求点D的坐标.
答
知识点:此题属于二次函数综合题,涉及了待定系数法求函数解析式、相似三角形的判定与性质,解答本题的难点是第二问,关键是分类讨论,注意不要漏解,难度一般.
(1)∵二次函数y=-x2+bx+3的图象经过点A(-1,0),∴0=-1-b+3,解得:b=2,所求二次函数的解析式为y=-x2+2x+3,则这个二次函数图象顶点B的坐标为(1,4);(2)过点B作BF⊥x轴,垂足为点F,在Rt△BCF中,BF=4,CF...
答案解析:(1)将点A的坐标代入,可得出b的值,从而求出函数解析式,然后可得出顶点坐标;
(2)过点B作BF⊥x轴,垂足为点F,过点D作DH⊥x轴,垂足为点H.由题意知,点H在点A的右侧,则可得出△ADH∽△ACE,从而有
=AH AE
=DH CE
,然后分别讨论,①若点D在AE的延长线上,则AD=5,解出x和y的值,若点D在线段AE上,则AD=3,同理也可求出点D的坐标.AD AC
考试点:二次函数综合题.
知识点:此题属于二次函数综合题,涉及了待定系数法求函数解析式、相似三角形的判定与性质,解答本题的难点是第二问,关键是分类讨论,注意不要漏解,难度一般.